Marked advantages of POTASSIUM NITRATE under water scarcity & salinity

Oded Achilea, Haifa Chemicals, Israel

Worldwide water scarcity – supply aspect

<u>Source</u>: "Catastrophic Fall in 2009 Global Food Production"by Eric deCarbonnel , 2009

Worldwide water scarcity – demand aspect

Since 1950

* World population increased by 100%

* Water consumption increased by <u>600%</u>

University of Oklahoma, Health Sciences Center (2005)

Two cardinal conclusions

- Irrigation must be made more efficient and more sustainable
- Nutrition techniques must be harnessed to increase WUE

Worldwide water scarcity – Let's join efforts

Water Use Efficiency

Water use = efficiency Dry (or fresh) matter produced Water transpired

Two independent plant functions are involved:

- Biomass production
- Water management

Water Use Efficiency

The Roles of Potassium

K & Biomass management

Potassium is a pre-requisite for normal building process of plant structure

Potassium is a pre-requisite for normal functioning of all plant biochemical and physiological systems <u>60 enzymes!</u>

K & Biomass management

K maintains <u>turgor</u>, thus reducing lodging and enhancing harvesting efficiency

K & Biomass management

Conclusion:

Under normal growing conditions –

The higher the K, the higher biomass production

K & Water management

Potassium status of the plant determines the recovery rate from a drought stress

Pioneering the Future Haifa

Potassium deficiency increases stomatal conductance in olive trees

* At a typical summer day during the experiment period (93d.); Plants under drought regime; Cultivar: *'Chemalali de Sfax'*

Arqero, Barranco & Benlloch (2006)

Potassium deficiency -

increases transpiration rate in olive trees

During the season

Leaf cumulative transpiration (g/cm²)

Cultivar: 'Lechin de Granada'

Benlloch-Gonzalez, Arqero, Fournier, Barranco & Benlloch (2008)

Potassium deficiency – reduces Water Use Efficiency in olive trees

* An integration of entire experiment period (93d.); Cultivar: 'Chemalali de Sfax'

Pioneering the Future Haifa

Arqero, Barranco & Benlloch (2006)

Potassium deficiency – **decrease Water Use Efficiency in sunflower plants**

Plants were grown for 6 days in nutrient solution with 0.1 or 2.5 mM K⁺

Fournier, Roldan, Sanches, Alexandre & Benlloch (2005)

Potassium deficiency decrease Water Use Efficiency

A similar pattern governs both crops

Olive trees (perennial, slow growing species) and in **Sunflower** (annual, fast growing species)

And other crops too:

- ✓ Faba beans (Abdel-Wahab & Abd-Alla, 1995)
 - **Sugar cane** (Sudama & al., 1998)
- <u>Rice</u> (Tiwari et al., 1998)

PGR's are involved too in potassium management and stomatal functioning

Abscisic acid (ABA) has a special role in plant stress

management.

- Increased ABA levels stimulate the release of K from the guard cells, resulting in stomatal closure.
- ✤ <u>Ethylene</u> is involved too.

Conclusion:

Under normal growing conditions -

The higher the <u>K</u>, the higher the <u>WUE</u>

The roles of Nitrate

Nitrate & biomass management

Comparative effects of Nitrate and Ammonium on photosynthesis & biomass production in <u>wheat</u>

Conclusion:

Nitrate-nitrogen is markedly more efficient than ammonium-nitrogen, regarding production of dry matter, especially under K deficiency

Lips, Leidi, Silberbush, Soaresh & Lewis, 1990

Nitrate & water management

Comparative effects of Nitrate and Ammonium on transpiration rate of <u>wheat</u>

Nitrogen was applied as <u>calcium-Nitrate</u> or Ammonium-sulfate, @: 4 mM of N, at various rates of K, as potassium sulfate. Wheat seedlings were grown for 21 days.

Lips, Leidi, Silberbush, Soaresh & Lewis, 1990

Nitrate & WUE

Effects of Nitrate and Ammonium on WUE in wheat

Nitrogen was applied as <u>calcium-Nitrate</u> or Ammonium-sulfate, @: 4 mM of N, at various rates of K, as potassium sulfate. Wheat seedlings were grown for 21 days.

Lips, Leidi, Silberbush, Soaresh & Lewis, 1990

Conclusion:

Under normal growing conditions -

The higher the **Nitrate**, the higher the **WUE**

The effect of POTASSIUM NITRATE

The effect of potassium nitrate on size distribution of orange fruits

'Jaffa' oranges, in Israel, 2002

Increasing Mango trees productivity by spraying Potassium Nitrate, via the increase in WUE

Shongwe & Roberts-Nkrumah, Trinidad, 1996

Increased of WUE by nutrigation of **Potassium Nitrate**, in Tomatoes

N form (%)	N (g/plant)		<u>Yield</u>	WUE
(NO ₃ ⁻ : NH ₄ +)	Multi-K	Amm. Nitrate	(g/plant)	mL water / g fresh fruit
100 : 0	6.3	0	2550*	23**
70 : 30	6.3	4.4	1980*	28**
63 : 37	6.3	8.7	1200*	29**
59 : 41	6.3	13.2	1000*	34**
100 : 0	12.6	0	3430*	23**

* Significance at 0.1% probability; ** At 1% probability

Kafkafi, Walerstein & Feigenbaum, 1971

Potassium Nitrate increases WUE

Hence: Every m³ of water can produce more if combined with Potassium Nitrate

The problem of man-made salinization

Severely salinated fields in central California

Irrigation-induced salinization

Country	Badly salinized as % of irrigated area		
India	37 – 60		
Iraq	50		
Egypt	30		
Pakistan	25		
U.S.	23		
Australia	20		
China	15		
Pakistan	14		
Israel	13		

Washington State University (2001)

The mechanism of salinity damage

Most frequent ions involved in salinity situations are:

- Anions: <u>Cl</u>- , SO₄-², B-
- Cations: Na+
- Elevated EC
 Specific toxicity

The effect of **Nitrate** in reducing Cl⁻ absorption

Antagonistic effect of <u>Nitrate</u> on chloride in AVOCADO

Relieving chloride toxicity in avocado by increasing nitrate concentration in irrigation water containing 16 mM Cl

Bar, Kafkafi & Lahav, 1987

Antagonistic effect of <u>Nitrate</u> on chloride in AVOCADO

Nitrate combats chloride in irrigation water

Avocado, ('Schmidt Mex. salinity-sensitive) rootstock, Israel

Bar, Kafkafi & Lahav, 1987

Antagonistic effect of <u>Nitrate</u> on chloride in MAIZE

Chloride in irrigation water (mM)

The importance of **K / Na** ratio in plant metabolism

The importance of K / Na

Na's toxicity stems from its competition with **K** for enzymatic binding sites (60 of them, remember?)

High K / Na ratio in the plant is more important than maintaining low Na concentration

The effect of Potassium Nitrate

in increasing biomass production under salinity conditions

Effect of salinity and Potassium Nitrate on yield of Sweet Corn (cv. Jubilee)

Pioneering the Future Haifa

Imas & Feigin, 1995. Israel

Potassium Nitrate reverses the adverse effects of salinity on Greenhouse TOMATOES

Potassium Nitrate increases fresh yield in greenhouse CHINESE CABBAGE (cv. Kazumi) under salinity

Pioneering the Future Haifa

Potassium Nitrate increases salinity resistance in greenhouse LETTUCE (cv. Salinas) under salinity

Feigin et Al., 1990, Israel

Under normal growing conditions a modest application of <u>Potassium Nitrate</u>, enables 10-35% higher harvested produce from a given water quota

Under salinity conditions a modest application of <u>Potassium Nitrate</u> enables maintaining harvested produce in spite of elevated EC values

